p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.286C23, C23.366C24, C22.1722+ 1+4, C22.1272- 1+4, C22⋊C4.129D4, C23.174(C2×D4), C2.49(D4⋊5D4), C2.31(D4⋊6D4), C23.34(C4○D4), (C23×C4).90C22, C23.Q8⋊17C2, C23.8Q8⋊52C2, C23.11D4⋊16C2, C23.34D4⋊27C2, (C22×C4).819C23, (C2×C42).509C22, C23.10D4.6C2, C22.246(C22×D4), C24.C22⋊49C2, (C22×D4).520C22, C23.63C23⋊45C2, C23.65C23⋊60C2, C2.38(C22.19C24), C2.C42.123C22, C2.17(C22.33C24), C2.16(C22.50C24), C2.24(C22.47C24), C2.34(C23.36C23), (C2×C4×D4).53C2, (C4×C22⋊C4)⋊65C2, (C2×C4).897(C2×D4), (C2×C42⋊2C2)⋊1C2, (C2×C4).116(C4○D4), (C2×C4⋊C4).246C22, C22.243(C2×C4○D4), (C2×C22⋊C4).140C22, SmallGroup(128,1198)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.286C23
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=1, f2=b, g2=cb=bc, eae=gag-1=ab=ba, faf-1=ac=ca, ad=da, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, fef-1=de=ed, df=fd, dg=gd, eg=ge, fg=gf >
Subgroups: 500 in 266 conjugacy classes, 100 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C42⋊2C2, C23×C4, C22×D4, C4×C22⋊C4, C23.34D4, C23.8Q8, C23.63C23, C24.C22, C23.65C23, C23.10D4, C23.Q8, C23.11D4, C2×C4×D4, C2×C42⋊2C2, C24.286C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.19C24, C23.36C23, C22.33C24, D4⋊5D4, D4⋊6D4, C22.47C24, C22.50C24, C24.286C23
(1 56)(2 62)(3 54)(4 64)(5 52)(6 13)(7 50)(8 15)(9 24)(10 45)(11 22)(12 47)(14 57)(16 59)(17 34)(18 31)(19 36)(20 29)(21 38)(23 40)(25 61)(26 53)(27 63)(28 55)(30 41)(32 43)(33 44)(35 42)(37 48)(39 46)(49 60)(51 58)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 25)(2 26)(3 27)(4 28)(5 59)(6 60)(7 57)(8 58)(9 37)(10 38)(11 39)(12 40)(13 49)(14 50)(15 51)(16 52)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)(29 33)(30 34)(31 35)(32 36)(53 62)(54 63)(55 64)(56 61)
(1 15)(2 16)(3 13)(4 14)(5 53)(6 54)(7 55)(8 56)(9 35)(10 36)(11 33)(12 34)(17 47)(18 48)(19 45)(20 46)(21 43)(22 44)(23 41)(24 42)(25 51)(26 52)(27 49)(28 50)(29 39)(30 40)(31 37)(32 38)(57 64)(58 61)(59 62)(60 63)
(2 16)(4 14)(5 55)(6 8)(7 53)(10 36)(12 34)(17 45)(18 20)(19 47)(21 41)(22 24)(23 43)(26 52)(28 50)(30 40)(32 38)(42 44)(46 48)(54 56)(57 62)(58 60)(59 64)(61 63)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 29 27 35)(2 30 28 36)(3 31 25 33)(4 32 26 34)(5 45 57 23)(6 46 58 24)(7 47 59 21)(8 48 60 22)(9 15 39 49)(10 16 40 50)(11 13 37 51)(12 14 38 52)(17 62 43 55)(18 63 44 56)(19 64 41 53)(20 61 42 54)
G:=sub<Sym(64)| (1,56)(2,62)(3,54)(4,64)(5,52)(6,13)(7,50)(8,15)(9,24)(10,45)(11,22)(12,47)(14,57)(16,59)(17,34)(18,31)(19,36)(20,29)(21,38)(23,40)(25,61)(26,53)(27,63)(28,55)(30,41)(32,43)(33,44)(35,42)(37,48)(39,46)(49,60)(51,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,25)(2,26)(3,27)(4,28)(5,59)(6,60)(7,57)(8,58)(9,37)(10,38)(11,39)(12,40)(13,49)(14,50)(15,51)(16,52)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(29,33)(30,34)(31,35)(32,36)(53,62)(54,63)(55,64)(56,61), (1,15)(2,16)(3,13)(4,14)(5,53)(6,54)(7,55)(8,56)(9,35)(10,36)(11,33)(12,34)(17,47)(18,48)(19,45)(20,46)(21,43)(22,44)(23,41)(24,42)(25,51)(26,52)(27,49)(28,50)(29,39)(30,40)(31,37)(32,38)(57,64)(58,61)(59,62)(60,63), (2,16)(4,14)(5,55)(6,8)(7,53)(10,36)(12,34)(17,45)(18,20)(19,47)(21,41)(22,24)(23,43)(26,52)(28,50)(30,40)(32,38)(42,44)(46,48)(54,56)(57,62)(58,60)(59,64)(61,63), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,29,27,35)(2,30,28,36)(3,31,25,33)(4,32,26,34)(5,45,57,23)(6,46,58,24)(7,47,59,21)(8,48,60,22)(9,15,39,49)(10,16,40,50)(11,13,37,51)(12,14,38,52)(17,62,43,55)(18,63,44,56)(19,64,41,53)(20,61,42,54)>;
G:=Group( (1,56)(2,62)(3,54)(4,64)(5,52)(6,13)(7,50)(8,15)(9,24)(10,45)(11,22)(12,47)(14,57)(16,59)(17,34)(18,31)(19,36)(20,29)(21,38)(23,40)(25,61)(26,53)(27,63)(28,55)(30,41)(32,43)(33,44)(35,42)(37,48)(39,46)(49,60)(51,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,25)(2,26)(3,27)(4,28)(5,59)(6,60)(7,57)(8,58)(9,37)(10,38)(11,39)(12,40)(13,49)(14,50)(15,51)(16,52)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(29,33)(30,34)(31,35)(32,36)(53,62)(54,63)(55,64)(56,61), (1,15)(2,16)(3,13)(4,14)(5,53)(6,54)(7,55)(8,56)(9,35)(10,36)(11,33)(12,34)(17,47)(18,48)(19,45)(20,46)(21,43)(22,44)(23,41)(24,42)(25,51)(26,52)(27,49)(28,50)(29,39)(30,40)(31,37)(32,38)(57,64)(58,61)(59,62)(60,63), (2,16)(4,14)(5,55)(6,8)(7,53)(10,36)(12,34)(17,45)(18,20)(19,47)(21,41)(22,24)(23,43)(26,52)(28,50)(30,40)(32,38)(42,44)(46,48)(54,56)(57,62)(58,60)(59,64)(61,63), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,29,27,35)(2,30,28,36)(3,31,25,33)(4,32,26,34)(5,45,57,23)(6,46,58,24)(7,47,59,21)(8,48,60,22)(9,15,39,49)(10,16,40,50)(11,13,37,51)(12,14,38,52)(17,62,43,55)(18,63,44,56)(19,64,41,53)(20,61,42,54) );
G=PermutationGroup([[(1,56),(2,62),(3,54),(4,64),(5,52),(6,13),(7,50),(8,15),(9,24),(10,45),(11,22),(12,47),(14,57),(16,59),(17,34),(18,31),(19,36),(20,29),(21,38),(23,40),(25,61),(26,53),(27,63),(28,55),(30,41),(32,43),(33,44),(35,42),(37,48),(39,46),(49,60),(51,58)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,25),(2,26),(3,27),(4,28),(5,59),(6,60),(7,57),(8,58),(9,37),(10,38),(11,39),(12,40),(13,49),(14,50),(15,51),(16,52),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48),(29,33),(30,34),(31,35),(32,36),(53,62),(54,63),(55,64),(56,61)], [(1,15),(2,16),(3,13),(4,14),(5,53),(6,54),(7,55),(8,56),(9,35),(10,36),(11,33),(12,34),(17,47),(18,48),(19,45),(20,46),(21,43),(22,44),(23,41),(24,42),(25,51),(26,52),(27,49),(28,50),(29,39),(30,40),(31,37),(32,38),(57,64),(58,61),(59,62),(60,63)], [(2,16),(4,14),(5,55),(6,8),(7,53),(10,36),(12,34),(17,45),(18,20),(19,47),(21,41),(22,24),(23,43),(26,52),(28,50),(30,40),(32,38),(42,44),(46,48),(54,56),(57,62),(58,60),(59,64),(61,63)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,29,27,35),(2,30,28,36),(3,31,25,33),(4,32,26,34),(5,45,57,23),(6,46,58,24),(7,47,59,21),(8,48,60,22),(9,15,39,49),(10,16,40,50),(11,13,37,51),(12,14,38,52),(17,62,43,55),(18,63,44,56),(19,64,41,53),(20,61,42,54)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4H | 4I | ··· | 4V | 4W | 4X | 4Y | 4Z |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C24.286C23 | C4×C22⋊C4 | C23.34D4 | C23.8Q8 | C23.63C23 | C24.C22 | C23.65C23 | C23.10D4 | C23.Q8 | C23.11D4 | C2×C4×D4 | C2×C42⋊2C2 | C22⋊C4 | C2×C4 | C23 | C22 | C22 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 4 | 12 | 4 | 1 | 1 |
Matrix representation of C24.286C23 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 2 |
0 | 0 | 0 | 0 | 1 | 3 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 3 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 1 | 3 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,2,1,0,0,0,0,2,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,3,0,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,1,0,0,0,0,0,3] >;
C24.286C23 in GAP, Magma, Sage, TeX
C_2^4._{286}C_2^3
% in TeX
G:=Group("C2^4.286C2^3");
// GroupNames label
G:=SmallGroup(128,1198);
// by ID
G=gap.SmallGroup(128,1198);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,758,723,100,675,192]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=1,f^2=b,g^2=c*b=b*c,e*a*e=g*a*g^-1=a*b=b*a,f*a*f^-1=a*c=c*a,a*d=d*a,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,f*e*f^-1=d*e=e*d,d*f=f*d,d*g=g*d,e*g=g*e,f*g=g*f>;
// generators/relations